Course curriculum

  • 1

    Before we start: Course menu & Study text

    • Course menu

    • PSI study text

  • 2

    Interviews

    • Interview questions

    • Interview schedule

  • 3

    Week 1: Lagrangian and Hamiltonian mechanics

    • Plan for Week 1

    • Lecture 1a: Introduction

    • Lecture 1b: Action principle

    • Lecture 1c: Integrals of motion

    • Lecture 1d: Noether's theorem

    • Tutorial 1

    • Tutorial 1: upload your notes

    • Tutorial 1 Solutions

    • Lecture 2a: Hamilton's canonical equations

    • Lecture 2b: Legendre transform

    • Lecture 2c: Poisson brackets

    • Lecture 2d: Canonical transformations

    • Lecture 2e: Hamilton's function

    • Lecture 2f: Liouville's theorem (statistical physics)

    • Tutorial 2

    • Tutorial 2: upload your notes

    • Tutorial 2: Solutions

    • Homework 1

  • 4

    Week 2: Advanced Hamiltonian mechanics

    • Plan for Week 2

    • Lecture 3a: Hamilton-Jacobi equation

    • Lecture 3b: Example

    • Lecture 3c: Hamiltonian vector fields

    • Lecture 3d: Hidden symmetries

    • Lecture 3e: Examples of hidden symmetries

    • Tutorial 3: Why is real life interesting

    • Tutorial 3: upload your notes

    • Tutorial 3: Solutions

    • Lecture 4a: Constraints -- introduction

    • Lecture 4b: Holonomic & gauge constraints

    • Lecture 4c: Integrable systems

    • Lecture 4d: Nambu mechanics

    • Tutorial 4: Life is constrained

    • Tutorial 4: upload your notes

    • Tutorial 4: solutions

  • 5

    Week 3: First look at classical field theory

    • Plan for Week 3

    • Lecture 5a: Vibrations of string -- from discrete to continuum

    • Lecture 5b: String theory in a nutshell

    • Lecture 5c: First look at classical field theory

    • Lecture 5d: Maxwell's theory

    • Lecture 6a: Maxwell's triumph

    • Lecture 6b: Electromagnetic potentials & gauge degrees of freedom

    • Lecture 6c: Electrostatics -- Dirichlet Green function

    • Lecture 6d: Method of images

    • Tutorial 5: Method of images

    • Tutorial 5: upload your notes

    • Tutorial 5: Solutions

    • Lecture 7a: Green function calculation

    • Lecture 7b: Retarded potentials

    • Lecture 7c: Lienard-Wiechert potentials

    • Lecture 7d: Radiation reaction force

    • Homework 2: Electromagnetic radiation

  • 6

    Week 4: Special relativity

    • Plan for Week 4

    • Lecture 8a: From Maxwell to special relativity

    • Lecture 8b: Maxwell's theory in relativistic notation -- part A

    • Lecture 8c: Maxwell's theory in relativistic notation -- part B

    • Lecture 8d: Causal structure

    • Tutorial 6: Electromagnetic tensor

    • Tutorial 6: upload your notes

    • Tutorial 6: Solutions

    • 9a: Lorentz transformations

    • Lecture 9b: Relativistic particles

    • Lecture 9c: p-branes

    • Lecture 9d: Nambu-Goto vs. Polyakov actions

    • Tutorial 7: Special relativity

    • Tutorial 7: upload your notes

    • Tutorial 7: Solutions

  • 7

    Week 5: Relativistic field theories

    • Plan for Week 5

    • Lecture 10a: Field equations and Noether's theorem

    • Lecture 10b: Charge conservation in relativistic notation

    • Lecture 10c: Remarks on energy momentum tensor

    • Lecture 10d: Classical electrodynamics

    • Tutorial 8: Feynman's derivation of Maxwell's theory

    • Tutorial 8: upload your notes

    • Tutorial 8: Solutions

    • Homework 3: Maxwell's Action -- Life is a Calculation

    • Lecture 11a: Scalar electrodynamics

    • Lecture 11b: Beyond classical electrodynamics

    • Lecture 11c: Born-Infeld theory

    • Lecture 11d: Feynman-Wheeler theory

    • Monster Minds: Handout on Feynman-Wheeler theory

    • Original Feynman's paper

  • 8

    Homework solutions

    • Homework 1: Hikari

    • Homework 2: Nico

    • Homework 3: Jose