Course curriculum

  • 1

    Before we start: course plan, requirements, study text

    • Welcome: Course plan and requirements

    • Course Menu & Requirements

    • PSI study text

  • 2

    Week 1: First look at GR

    • Plan for Week 1

    • Lecture 1a: Conceptual path to the theory

    • Lecture 1b: Principle of equivalence: Einstein's elevator

    • Lecture 1c: Gravitational redshift & Light bending

    • Lecture 1d: Brief summary

    • Lecture 1e: Local inertial (freely falling) frame

    • Lecture 1f: Geodesic equation

    • Lecture 1g: Curved metric and Christoffel symbols

    • Lecture 2a: Newtonian limit

    • Lecture 2b: Gravitational redshift again

    • Lecture 2c: Brief summary

    • Lecture 2d: Fake gravity: first look at Rindler

    • Tutorial 1: Doppler and gravitational redshifts

    • Tutorial 1: Upload your notes

    • Tutorial 1: Solutions

    • Homework 1: Equivalence principle at work - charge in a lab

    • 3a: True vs. fake gravity

    • 3b: Field theory for gravity

    • Lecture 3c: Introduction to differential geometry: manifolds

    • Lecture 3d: Maps, curves, and surfaces

  • 3

    Week 2: Differential geometry

    • Plan for Week 2

    • Lecture 4a: Brief summary

    • Lecture 4b: Tensors - part 1

    • Lecture 4c: Tensors- part 2

    • Lecture 4d: Connection

    • Tutorial 2: Some differential geometry

    • Tutorial 2: Upload your notes

    • Tutorial 2: Solutions

    • Lecture 5a: Metric

    • Lecture 5b: Brief summary

    • Lecture 5c: Invariant volume element

    • Lecture 5d: Parallel transport & Killing vectors

    • Tutorial 3: The connection

    • Tutorial 3: Upload your notes

    • Tutorial 3: Solutions

    • Lecture 6a: Motivating the metricity condition and curvature

    • Lecture 6b: Riemann tensor

    • Lecture 6c: Brief summary

    • Lecture 6d: Rabbits and relations

    • Lecture 6e: First look at cosmological constant

    • Lecture 6f: General relativity: particle in curved space

  • 4

    Week 3: General relativity

    • Plan for Week 3

    • Lecture 7a: Geodesic deviation equation

    • Lecture 7b: Fields in curved space

    • Lecture 7c: Rosenfeld's energy momentum tensor

    • Lecture 7d: Example 1 -- scalar field

    • Lecture 7e: Example 2 -- electromagnetism in curved space

    • Lecture 7f: Example 3 -- perfect fluid

    • Tutorial 4: Tensorial beasts of GR

    • Tutorial 4: Upload your notes

    • Tutorial 4: Solutions

    • Lecture 8a: Einstein-Hilbert action

    • Lecture 8b: Palatini formalism & other remarks on Einstein-Hilbert action

    • Lecture 8c: Einstein equations with matter

    • Lecture 8d: Bianchi identities

    • Lecture 8e: Bianchi identities in action -- how many evolution equations?

    • Lecture 8f: Conservation laws

    • Tutorial 5: Killing vectors and Maxwell in curved space

    • Tutorial 5: Upload your notes

    • Tutorial 5: Solutions

    • Lecture 9a: A few remarks on energy conditions

    • Lecture 9b: Linearized gravity -- brief comments on your homework

    • Lecture 9c: Gravitational waves - gauge fixing

    • Lecture 9d: Gravitational waves - 2 polarizations

    • Homework 2: Linearized gravity

  • 5

    Week 4: Applications

    • Plan for Week 4

    • Lecture 10a: Radiative fields from an isolated system

    • Lecture 10b: Remarks on spin and radiation

    • Lecture 10c: Energy of gravitational field -- Landau & Lifshitz prescription

    • Lecture 10d: Perturbative construction of gravitational energy momentum tensor

    • Lecture 10e: Quadrupole radiation formula

    • Tutorial 6: Gauge fixing

    • Tutorial 6: Upload your notes

    • Tutorial 6: Solutions

    • Lecture 11a: Schwarzschild solution & Birkhof's theorem

    • Lecture 11b: Singularities of Schwarzschild solution

    • Lecture 11c: Schwarzschild solution at work -- first verifications of GR

    • Lecture 11d: Geodesics in Schwarzschild

    • Lecture 11e: Perihelion shift of Mercury

    • Tutorial 7: Linearized gravity

    • Tutorial 7: Upload your notes

    • Tutorial 7: Solutions

    • Lecture 12a: Black holes -- introductory remarks

    • Lecture 12b: Rindler horizon as a surface of infinite redshift

    • Lecture 12c: Maximal extension of Rindler space

    • Lecture 12d: Basic features of Schwarzschild black hole

    • Lecture 12e: Einstein-Rosen bridge

    • Lecture 12f: A few remarks on astrophysical black holes

    • Homework 3: Light bending in Newton's and Einstein's gravity

  • 6

    Week 5: Advanced topics

    • Plan for Week 5

    • Lecture 13a: Schwarzschild black hole -- 1st law of black hole mechanics

    • Lecture 13b: Four laws of black hole mechanics

    • Lecture 13c: Bekenstein's entropy and Hawking's discovery

    • Lecture 13d: Unruh temperature via Euclidean trick

    • Lecture 13e: Euclidean derivation of the area law

    • Tutorial 8: Black holes

    • Tutorial 8: Upload your notes

    • Tutorial 8: Solutions

    • Lecture 14a: Remarks on Hawking radiation

    • Lecture 14b: Black hole information paradox Part I - Hawking vs. Page curve

    • Lecture 14c: Black hole information paradox Part II - information recovery

    • Lecture 14d: Brief summary of the course

  • 7

    Interviews

    • List of questions

    • Interview Schedule